165 research outputs found

    Improving accuracy on wave height estimation through machine learning techniques

    Get PDF
    Estimatabion of wave agitation plays a key role in predicting natural disasters, path optimization and secure harbor operation. The Spanish agency Puertos del Estado (PdE) has several oceanographic measure networks equipped with sensors for different physical variables, and manages forecast systems involving numerical models. In recent years, there is a growing interest in wave parameter estimation by using machine learning models due to the large amount of oceanographic data available for training, as well as its proven efficacy in estimating physical variables. In this study, we propose to use machine learning techniques to improve the accuracy of the current forecast system of PdE. We have focused on four physical wave variables: spectral significant height, mean spectral period, peak period and mean direction of origin. Two different machine learning models have been explored: multilayer perceptron and gradient boosting decision trees, as well as ensemble methods that combine both models. These models reduce the error of the predictions of the numerical model by 36% on average, demonstrating the potential gains of combining machine learning and numerical models

    Thermal Diffusion and Specular Reflection, Monte Carlo-based Study on Human Skin via Pulsed Fiber Laser Energy

    Get PDF
    The aim of traditional Chinese medicine (TCM) in acupuncture is sometimes to restore and regulate energy balance by stimulating specific points along the specific meridians traced on the human body via different techniques such as mechanical pressure, moxibustion and others. Hence, physicians have struggled to improve treatment for common diseases such as migraine and headaches. Heat stimulation and some pharmacological effects from moxa have been attributed to the therapeutic efficacy of such techniques. As heat can diffuse through the tissue, skins temperature will rise in the surrounding tissue. In this work, heat diffusion on a simple, 5-layer model of human skin is presented. Based on this, and by using Monte Carlo techniques, a photon or a photon package is launched into the tissue for mimicking the propagation of such photons at two different wavelengths through the tissue. The method generally describes the scholastic nature of radiation interactions. Most of the laser energy is deposited within a volume which cross-sectional area is the size of the beam itself. As could be seen, in the epidermis layer of the model, the heat does not go deep and nearly all the heat diffusion occurs on the edges of the beam, causing losses. Heat dissipation occurs faster and goes down to 2°C in the adipose tissue since there is low water content in this region. On the contrary, there is a fast heat increase in the muscle layer, up to 6°C at the most superficial layer. Since melanin is the most important epidermal chromophore, it can be noted that light shows strong absorption via melanin, at 690nm laser wavelength. In the papillary dermis the heat decreases and spreads out to the surrounding tissue. Once it reaches the adipose tissue, the heat is not absorbed enough; therefore, it is transmitted into the muscle, where the temperature rise is higher and reaches nearly 40 °C. Finally, photodynamics in a simple 5-layer skin model were explored at two laser wavelengths: 690nm and 1069nm, where no thermal damage would be expected, given the energy level of the employed pulses. Such pulsed laser energy levels remain to be tested in living tissue

    Effects of family control on the degree and type of diversification: empirical evidence for business groups

    Get PDF
    This article analyzes the impact of ownership structure on corporate diversification,with reference to large listed family business groups. By considering agency theoryand socioemotional wealth, the study examines the relationship between family own-ership, concentration of ownership, and degree and type of diversification. The studyconsiders 99 Spanish listed business groups (50 family-controlled- and 49 nonfamily-controlled groups) and considers diversification of business group as the focus ofanalysis. The results show how family business groups present a lower preference forunrelated diversification than related diversification. There is also a nonlinear rela-tionship between the concentration of ownership in family groups and the degree ofdiversification, showing different behaviors in family groups according to sharesowned by the family's leading shareholders. This article contributes to the literatureby providing a more precise identification of the corporate strategy adopted by busi-ness groups and establishing new evidence about the impact of family control ondiversification strategies and the differences regarding nonfamily business groups

    A divergence-cleaning scheme for cosmological SPMHD simulations

    Full text link
    In magnetohydrodynamics (MHD), the magnetic field is evolved by the induction equation and coupled to the gas dynamics by the Lorentz force. We perform numerical smoothed particle magnetohydrodynamics (Spmhd) simulations and study the influence of a numerical magnetic divergence. For instabilities arising from divergence B related errors, we find the hyperbolic/parabolic cleaning scheme suggested by Dedner et al. 2002 to give good results and prevent numerical artifacts from growing. Additionally, we demonstrate that certain current Spmhd implementations of magnetic field regularizations give rise to unphysical instabilities in long-time simulations. We also find this effect when employing Euler potentials (divergenceless by definition), which are not able to follow the winding-up process of magnetic field lines properly. Furthermore, we present cosmological simulations of galaxy cluster formation at extremely high resolution including the evolution of magnetic fields. We show synthetic Faraday rotation maps and derive structure functions to compare them with observations. Comparing all the simulations with and without divergence cleaning, we are able to confirm the results of previous simulations performed with the standard implementation of MHD in Spmhd at normal resolution. However, at extremely high resolution, a cleaning scheme is needed to prevent the growth of numerical errors at small scales.Comment: 15 pages, 19 figures, submitted to MNRA

    Launching of Conical Winds and Axial Jets from the Disk-Magnetosphere Boundary: Axisymmetric and 3D Simulations

    Full text link
    We investigate the launching of outflows from the disk-magnetosphere boundary of slowly and rapidly rotating magnetized stars using axisymmetric and exploratory 3D magnetohydrodynamic (MHD) simulations. We find long-lasting outflows in both cases. (1) In the case of slowly rotating stars, a new type of outflow, a conical wind, is found and studied in simulations. The conical winds appear in cases where the magnetic flux of the star is bunched up by the disk into an X-type configuration. The winds have the shape of a thin conical shell with a half-opening angle 30-40 degrees. The conical winds may be responsible for episodic as well as long-lasting outflows in different types of stars. (2) In the case of rapidly rotating stars (the "propeller regime"), a two-component outflow is observed. One component is similar to the conical winds. A significant fraction of the disk matter may be ejected into the winds. A second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the opened polar field lines of the star. The jet has a mass flux about 10% that of the conical wind, but its energy flux (dominantly magnetic) can be larger than the energy flux of the conical wind. The jet's angular momentum flux (also dominantly magnetic) causes the star to spin-down rapidly. Propeller-driven outflows may be responsible for the jets in protostars and for their rapid spin-down. The jet is collimated by the magnetic force while the conical winds are only weakly collimated in the simulation region.Comment: 29 pages and 29 figures. This version has a major expansion after comments by a referee. The 1-st version is correct but mainly describes the conical wind. This version describes in greater detail both the conical winds and the propeller regime. Accepted to the MNRA

    High order accurate shock capturing schemes for two-component Richtmyer-Meshkov instabilities in compressible magnetohydrodynamics

    Get PDF
    We design a conservative and entropy satisfying numerical scheme to perform numerical simulations of two component Richtmyer-Meshkov (RM) instabilities in compressible magnetohydrodynamics (MHD). We first formulate a conservative model of a two-component compressible MHD fluid ruled under two ideal gases with different adiabatic exponents. The formulation includes a level set function that allows to evolve the two components of the plasma in a conservative and consistent way. We present a set of examples including two-component Riemann problems and high Mach shock wave interactions with entropy contact waves that validate the high order accurate numerical scheme. We observe that turbulent regimes are completely developed in different examples where shocks, contacts and rarefactions waves propagate with correct speed
    corecore